Surfaces of Urban Life: Design Opportunities for Addressing Climate and Comfort across Scales

Forrest Meggers

This essay is an excerpt of Design with Life by Mitchell Joachim and Maria Aiolova from Terreform ONE, published by Actar Publishers

While we have achieved unprecedented infrastructural feats, technical developments, and increased prosperity, our urbanity has also created the grandest challenges we have ever faced. The societal successes that enabled our massive urban expansion have simultaneously enabled our intellectual capabilities to recognize these problems. We can now characterize and predict with confidence the very real and dire consequences of unchecked resource consumption and environmental degradation. The urban climate is full of dangerous positive feedback loops that models show are driving conditions to be less and less conducive to life (Meggers et al. 2016; Bruelisauer et al. 2014; Allegrini, Dorer, and Carmeliet 2012; Salata et al. 2016).

But we don’t create solutions by developing models or by disseminating the science and statistics of climate change, urban heat islands, and ecosystem contamination. We must design solutions to these problems. With a significant cohort of people disinterested in scientific reason, our solutions must not simply react to those scientifically defined motivations. They must be creative beacons that enable new paradigms on a tangible level that broadly engages the community. We can combine solutions to perceivable goals like beauty and comfort with those derived more abstractly like climate change (Bruelisauer and Berthold 2015). The surfaces of our urban infrastructure and, more importantly, our urban living ecology must be recognized as an underutilized actor with great potential to affect paradigm changes.

Our understanding of the dynamics of the built environment and its impact and interface with the environment has never been more important. Buildings are constantly trapping heat from the sun, utilizing high value generated energy, and rejecting heat into the environment. Dealing with these dynamics leads buildings to be the largest sector of greenhouse gas emissions, but also implicates them as a major source of the urban heat island. In our work at the CHAOS lab at Princeton, we investigate energy exchanges and explore the thermal interfaces that are directly perceptible to the public they face (Teitelbaum and Meggers 2017). These are clearly mediated through the spaces created by the buildings both inside and out. Although the people living inside a building certainly experience space, the perception of comfort and the thermal condition imbued upon those people has far less to do with space than most consider. Surfaces matter.

Full content is available only for registered users. Please login or Register


Excerpt from:

Buy it at


Abraham, Sherin, and Xinrong Li. 2016. “Design of A Low-Cost Wireless Indoor Air Quality Sensor Network System.” International Journal of Wireless Information Networks 23 (1):57– 65. s10776-016-0299-y.
Allegrini, Jonas, Viktor Dorer, and Jan Carmeliet. 2012. “Influence of the Urban Microclimate in Street Canyons on the Energy Demand for Space Cooling and Heating of Buildings.” Energy and Buildings 55 (December):823–32. enbuild.2012.10.013.
Arens, Edward A., and H. Zhang. 2006. “The Skin’s Role in Human Thermoregulation and Comfort.” Center for the Built Environment. https://
Bruelisauer, Marcel, and Sonja Berthold. 2015. Reclaiming Backlanes: Design Vision for Increasing Building Performance and Reprogramming Common Spaces.
Bruelisauer, Marcel, Forrest Meggers, Esmail Saber, Cheng Li, and Hansjürg Leibundgut. 2014. “Stuck in a Stack – Temperature Measurements of the Microclimate around Split Type Condensing Units in a High Rise Building in Singapore.” Energy & Buildings 71 (March):28–37. enbuild.2013.11.056.
Eric Teitelbaum, Jake Read, and Forrest Meggers. 2016. “Spherical Motion Average Radiant Temperature Sensor(SMART Sensor).” In . Zurich, Switzerland. https://doi. org/DOI 10.3218/3774-6_115.
Georgescu, Matei, Philip E. Morefield, Britta G. Bierwagen, and Christopher P. Weaver. 2014. “Urban Adaptation Can Roll Back Warming of Emerging Megapolitan Regions.” Proceedings of the National Academy of Sciences 111 (8):2909–14. https://doi. org/10.1073/pnas.1322280111.
Meggers, Forrest, Gideon Aschwanden, Eric Teitelbaum, Hongshan Guo, Laura Salazar, and Marcel Bruelisauer. 2016. “Urban Cooling Primary Energy Reduction Potential: System Losses Caused by Microclimates.” Sustainable Cities and Society 27 (November):315–23. https://doi. org/10.1016/j.scs.2016.08.007.
Raman, Aaswath P., Marc Abou Anoma, Linxiao Zhu, Eden Rephaeli, and Shanhui Fan. 2014. “Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight.” Nature 515 (7528):540–44. https://doi. org/10.1038/nature13883.
Salata, Ferdinando, Iacopo Golasi, Roberto de Lieto Vollaro, and Andrea de Lieto Vollaro. 2016. “Urban Microclimate and Outdoor Thermal Comfort. A Proper Procedure to Fit ENVI-Met Simulation Outputs to Experimental Data.” Sustainable Cities and Society 26 (October):318–43. scs.2016.07.005.
Teitelbaum, Eric, and Forrest Meggers. 2017. “Expanded Psychrometric Landscapes for Radiant Cooling and Natural Ventilation System Design and Optimization.” Energy Procedia, CISBAT 2017 International ConferenceFuture Buildings & Districts – Energy Efficiency from Nano to Urban Scale, 122 (September):1129–34. egypro.2017.07.436.
Teitelbaum, Eric, Forrest Meggers, George Scherer, Prathap Ramamurthy, Louis Wang, and Elie Bou-Zeid. 2015. “ECCENTRIC Buildings: Evaporative Cooling in Constructed ENvelopes by Transmission and Retention Inside Casings of Buildings.” In 6th International Building Physics Conference, IBPC 2015. Torino, Italy: Elsevier.