Agriculture is the basis for civilization. From the days of relying on hunting and gathering, the practice of cultivating soil and farming animals catapulted humankind forward — unlocking profound development and prosperity. However, the ancient form of agriculture is a far cry from today’s industrialized counterpart, which has increasingly revealed its problematic downsides. For one, it is an extremely water-intensive industry. Today, the lion’s share of our planet’s precious freshwater supply is being poured into agriculture. Concurrently, WHO estimates that 844 million people lack basic drinking-water service, and that by 2025, half of the world’s population will be living in water-stressed areas [1]. Secondly, modern agriculture demands significant land area. An estimated 37% of our planet’s surface is used for farming — a number that is still growing [2]. Consequently, agriculture has historically been the prime mover for deforestation and loss of biodiversity.
While most of us expect to be able to enjoy apples, tomatoes, and avocados every day, anywhere in the world, the agriculture industry has colossal needs for transportation and logistical infrastructure — with equally colossal environmental and economical ramifications. World population is expected to reach 10 billion by 2050 [3] and agriculture as we know it today will need to almost double in size to serve this population [4]. However, most of the planet’s land has already been claimed [5], while the remaining arable land is being degraded at rapid rates [6].
Glasir is project that seeks to intervene in this scenario with a community-based system for urban farming. By combining the flexibility of modularity with the efficiency of aeroponic growth systems, the project offers self-regulating, vertical farming structures that can provide neighborhoods with affordable, local produce year around.